
Quantifying Software Leakage via Transmitters with Leakage Functions

I. INTRODUCTION

In a hardware side-channel attack, a transmitter modulates
a channel (a hardware resource) in a secret-dependent manner.
Most often, and in this paper, a transmitter is an instruction in
the victim program that causes variability in hardware resource
usage (i.e. channel modulation) as a function of its operands
[15]. A receiver (attacker) observes the channel modulation
via its impact on certain non-deterministic aspects of program
execution, like timing, resource contention, power dissipation,
and more, and thereby infers the operand’s value [17]. Hence,
when a secret program input is passed to an unsafe transmitter
operand, an attacker can gain information about the secret.

Our work uses microarchitectural leakage functions to quan-
tify leakage through a program’s transmitters and thereby
assess the ability of a program to protect the secrets it
processes.1 Microarchitectural leakage functions characterize
channel modulations by mapping transmitter operands to mi-
croarchitectural execution paths (µpaths), where a µpath is
defined as a partial order on the state updates made by an
instruction during its execution. In this paper, we consider
transmitters who create operand-dependent variability in their
own µpaths. In general, however, a transmitter can create
receiver-observable µpath variability for itself and/or other
instructions. From a leakage function, we can compute the
probability distributions of observable µpaths conditioned on
transmitter operands. Using these probability distributions, we
can quantify leakage with metrics such as mutual information
[19] and maximal leakage [14].

In this paper, we profile three leakage functions; each
corresponds to one of three hardware optimizations. Further,
we look at two of the leakage functions in the context of the
Poly1305 cryptographic hashing algorithm [2]. In doing so,
we consider how individual transmitters contribute to overall
leakage of a programs’ secret inputs.

II. BACKGROUND & MOTIVATION

State of the art hardware side-channel defenses adopt an
“all or nothing” strategy, where instruction operands are either
entirely safe or unsafe. Hence, unsafe operands can never pro-
cess secrets. Such is the case in the well-known, constant-time
programming discipline [7]. Due to the increasing complexity
of post-Moore’s Law optimizations, we will either have no safe
instructions [17] or overly conservative mitigations that disable
optimizations altogether, such that computational efficiency is
soon prohibitively degraded [7]. Therefore, programmers need
to be able to reason about the risk of a program leaking its
secrets in the presence of leaky instructions.

1Our concurrent work proposes this abstraction for precisely characterizing
the leakage of transmitters from SystemVerilog processor designs.

Figure 1: Zero-skip multiplier leakage function

Like prior work [10], we define random variables in our
communication channel model of a side-channel. The secret
space, S, includes all possible secret values. The victim
modulation space, XV , captures the channel modulations that
result from transmitters in the victim program. In our model,
channel modulations correspond to the variability in instruc-
tions’ µpaths. Lastly, the observation space, Y , represents the
attacker’s observations of the channel. The observation space
could be same as the victim modulation space, or it could
be a projection partitioning of the victim modulation space
based on an observer model, such as timing or contention.
We assume a powerful attacker that can observe the µpaths of
in flight instructions, i.e. the former scenario. Note that prior
work also models victim mitigation strategies and attacker
strategies in side-channel models. While we do not include
these here, they could easily be incorporated in future work.

III. METHODOLOGY

Our work is based on the observation that transmitters
leak more information about their operands in certain cir-
cumstances (e.g. for particular operand values), while in
other circumstances, minimal information may be leaked. For
example, consider a multiplier that implements the canonical
zero-skip optimization, where a multiply (MUL) instruction
takes a “fast” path if one or more of its operands are zero;
else, it takes a “slow” µpath. Clearly, a MUL creates µpath
variability for itself as a function of its operand values. If an
attacker observes a “fast” path, they can infer that at least one
operand is zero, which potentially reveals the entire secret.
If a “slow” path is observed, an attacker only learns that the
operands are non-zero, exposing relatively little information
about the secret value. Therefore, we use leakage functions to
model how µpaths vary with respect to transmitter operands.

Our methodology is as follows: first, we acquire the leakage
functions corresponding to all the transmitters in a program.
Second, we deploy the leakage functions to compute the
probabilities of observable µpaths conditioned on transmitter
operands. Using the conditional probabilities, we quantify
side-channel leakage through each transmitter. Lastly, we use
symbolic execution to determine if secret program inputs are
passed to transmitter operands, and if so, determine if multiple
transmitters can create additional leakage.

A. Step 1: Microarchitectural Leakage Functions

We consider three leakage functions based on hardware
optimizations proposed in the literature: 32-bit zero-skip mul-

1



Optimization Description No. of Paths
Zero-skip mult MUL insts take fast path if one or 2

more operands are 0, else slow path
Digit-serial mult MUL insts take 1 of 4 execution paths 4

based on if bytes of 2nd operand are 0
CVA6 div DIV insts take 1 of 66 paths based 66

on both operands’ no. of leading 0s

Table I: Leakage functions for 3 HW optimizations

tiplier [17], 32-bit digit-serial multiplier [11], and 64-bit serial
division as implemented in CVA6 [21]. Each of these leakage
functions outputs µpaths as a function of one or more of its
operands. See Table I for details.

B. Step 2: Leakage Quantification

To quantify the leakage of a program, we compare two
metrics, maximal leakage and mutual information. Maximal
leakage measures the maximum probability of each observa-
tion given any secret value. Mutual information is the amount
of information that an attacker learns about the secret space
from the observation space. Maximal leakage and mutual
information can be computed, respectively:

LML = log2
∑
y∈Y

max
s∈S

P (y|s)

LMI =
∑

s∈S,y∈Y

P (s)P (y|s) log2
P (y|s)∑

s∈S P (s)P (y|s)

It has been shown that mutual information is upper bounded
by maximal leakage [20]. Thus, prior work uses maximal
leakage as the appropriate metric to ensure that leakage
quantification is conservative when exact leakage functions
are unknown [10]. However, maximal leakage may be overly
pessimistic, because it overlooks the probability of the secret
value itself. Microarchitectural leakage functions allow us to
more precisely define the probability of an attacker observation
conditioned on the secret operands.

C. Step 3: Program Analysis

We encountered two main challenges when trying to quan-
tify leakage from transmitters in cryptographic programs. First,
the values of secret program inputs may be transformed
before they are passed to transmitter operands. Second, there
can be many transmitters in a single program which may
layer on top of one another and increase overall leakage. To
overcome these challenges, we used the symbolic execution
tool, KLEE [6], to determine how secrets are transformed from
program inputs to transmitter operands and whether multiple
transmitters leak additional information about the secret. To do
so, we instrumented the program and created a software model
of the leakage functions as a wrapper around the program’s
transmitters. Then by running the program on symbolic inputs,
we characterize the observable µpaths resulting from secret
inputs passed to transmitter operands.

We consider the Poly1305 hashing algorithm for secure
message authentication [18]. This program includes many
multiplication instructions where one of the two operands is
secret. Additionally, Poly1305 includes multiplications where

one operand is a transformed value of a secret input. There-
fore, this program is a good candidate to evaluate zero-skip
multiplication and digit-serial multiplication leakage functions.

IV. PRELIMINARY RESULTS

For each leakage function in Table I, we compute the mutual
information and maximal leakage, assuming that the secret
values are uniformly distributed. This assumption is valid for
our experiments because cryptographic keys are randomly dis-
tributed. For zero-skip multiplication, the mutual information
was nine orders of magnitude smaller than maximal leakage,
because the probability that the secret value is zero is very
small, 1

232 . Since mutual information takes the probability of
the secret into account and maximal leakage does not, this
explains the significant difference in the two metrics. For the
digit-serial multiplier, the mutual information is less than two
orders of magnitude smaller than maximal leakage. For CVA6
division, the mutual information is only about one third of
the maximal leakage. While we expect maximal leakage to be
conservative, these results show that when certain observations
only result from secret values with very low probabilities,
maximal leakage might be overly pessimistic.

Using KLEE to analyze the multiplication instructions in
Poly1305, we found that multiplying by a transformed secret
value had different leakage depending on the leakage func-
tion. For zero-skip multiplication, the transformed secret does
not change the attacker observation, and therefore does not
leak additional information about the secret. For digit-serial
multiplication, however, the transformed secret can result in a
different attacker observation, resulting in additional leakage.

Conclusion: Precise leakage functions allow us to be more
realistic about the risk of side-channel leakage. Thus, pro-
grams can be designed to protect secrets despite using unsafe
instructions.

V. RELATED WORK

Leakage quantification: Several works have evaluated dif-
ferent quantitative metrics for side-channel leakage [1, 3, 9, 14,
19, 20, 22]. A few works look at metrics for specific types of
side-channels [13] or specific mitigation strategies [10]. Our
work evaluates how more precise metrics can leveraged by
using microarchitectural leakage functions.

Leakage contracts: Hardware-software leakage contracts
have been proposed in prior work [12, 16, 17]. These contracts
often broadly classify operands of transmitters as safe or
unsafe. Microarchitectural leakage functions, on the other
hand, return exact µpaths, and therefore allow us to consider
the conditions under which said operands are safe or unsafe.

Symbolic execution for leakage analysis: Prior work uses
symbolic execution in the realm of side-channel discovery
and mitigation [4, 5, 8]. However, these approaches often
target a single type of side-channel, such as cache-based side-
channel attacks, or they are purely focused on using symbolic
execution to analyze software. We use symbolic execution
to model attacker observations (i.e. µpaths) that result from
secrets passed to transmitter operands.
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