
Quantifying Software Leakage via Transmitters with Leakage Functions

I. INTRODUCTION

In a hardware side-channel attack, a transmitter modulates
a channel (a hardware resource) in a secret-dependent manner.
Most often, and in this paper, a transmitter is an instruction in
the victim program that causes variability in hardware resource
usage (i.e. channel modulation) as a function of its operands
[15]. A receiver (attacker) observes the channel modulation
via its impact on certain non-deterministic aspects of program
execution, like timing, resource contention, power dissipation,
and more, and thereby infers the operand’s value [17]. Hence,
when a secret program input is passed to an unsafe transmitter
operand, an attacker can gain information about the secret.

Our work uses microarchitectural leakage functions to quan-
tify leakage through a program’s transmitters and thereby
assess the ability of a program to protect the secrets it
processes.1 Microarchitectural leakage functions characterize
channel modulations by mapping transmitter operands to mi-
croarchitectural execution paths (µpaths), where a µpath is
defined as a partial order on the state updates made by an
instruction during its execution. In this paper, we consider
transmitters who create operand-dependent variability in their
own µpaths. In general, however, a transmitter can create
receiver-observable µpath variability for itself and/or other
instructions. From a leakage function, we can compute the
probability distributions of observable µpaths conditioned on
transmitter operands. Using these probability distributions, we
can quantify leakage with metrics such as mutual information
[19] and maximal leakage [14].

In this paper, we profile three leakage functions; each
corresponds to one of three hardware optimizations. Further,
we look at two of the leakage functions in the context of the
Poly1305 cryptographic hashing algorithm [2]. In doing so,
we consider how individual transmitters contribute to overall
leakage of a programs’ secret inputs.

II. BACKGROUND & MOTIVATION

State of the art hardware side-channel defenses adopt an
“all or nothing” strategy, where instruction operands are either
entirely safe or unsafe. Hence, unsafe operands can never pro-
cess secrets. Such is the case in the well-known, constant-time
programming discipline [7]. Due to the increasing complexity
of post-Moore’s Law optimizations, we will either have no safe
instructions [17] or overly conservative mitigations that disable
optimizations altogether, such that computational efficiency is
soon prohibitively degraded [7]. Therefore, programmers need
to be able to reason about the risk of a program leaking its
secrets in the presence of leaky instructions.

1Our concurrent work proposes this abstraction for precisely characterizing
the leakage of transmitters from SystemVerilog processor designs.

Figure 1: Zero-skip multiplier leakage function

Like prior work [10], we define random variables in our
communication channel model of a side-channel. The secret
space, S, includes all possible secret values. The victim
modulation space, XV , captures the channel modulations that
result from transmitters in the victim program. In our model,
channel modulations correspond to the variability in instruc-
tions’ µpaths. Lastly, the observation space, Y , represents the
attacker’s observations of the channel. The observation space
could be same as the victim modulation space, or it could
be a projection partitioning of the victim modulation space
based on an observer model, such as timing or contention.
We assume a powerful attacker that can observe the µpaths of
in flight instructions, i.e. the former scenario. Note that prior
work also models victim mitigation strategies and attacker
strategies in side-channel models. While we do not include
these here, they could easily be incorporated in future work.

III. METHODOLOGY

Our work is based on the observation that transmitters
leak more information about their operands in certain cir-
cumstances (e.g. for particular operand values), while in
other circumstances, minimal information may be leaked. For
example, consider a multiplier that implements the canonical
zero-skip optimization, where a multiply (MUL) instruction
takes a “fast” path if one or more of its operands are zero;
else, it takes a “slow” µpath. Clearly, a MUL creates µpath
variability for itself as a function of its operand values. If an
attacker observes a “fast” path, they can infer that at least one
operand is zero, which potentially reveals the entire secret.
If a “slow” path is observed, an attacker only learns that the
operands are non-zero, exposing relatively little information
about the secret value. Therefore, we use leakage functions to
model how µpaths vary with respect to transmitter operands.

Our methodology is as follows: first, we acquire the leakage
functions corresponding to all the transmitters in a program.
Second, we deploy the leakage functions to compute the
probabilities of observable µpaths conditioned on transmitter
operands. Using the conditional probabilities, we quantify
side-channel leakage through each transmitter. Lastly, we use
symbolic execution to determine if secret program inputs are
passed to transmitter operands, and if so, determine if multiple
transmitters can create additional leakage.

A. Step 1: Microarchitectural Leakage Functions

We consider three leakage functions based on hardware
optimizations proposed in the literature: 32-bit zero-skip mul-

1



Optimization Description No. of Paths
Zero-skip mult MUL insts take fast path if one or 2

more operands are 0, else slow path
Digit-serial mult MUL insts take 1 of 4 execution paths 4

based on if bytes of 2nd operand are 0
CVA6 div DIV insts take 1 of 66 paths based 66

on both operands’ no. of leading 0s

Table I: Leakage functions for 3 HW optimizations

tiplier [17], 32-bit digit-serial multiplier [11], and 64-bit serial
division as implemented in CVA6 [21]. Each of these leakage
functions outputs µpaths as a function of one or more of its
operands. See Table I for details.

B. Step 2: Leakage Quantification

To quantify the leakage of a program, we compare two
metrics, maximal leakage and mutual information. Maximal
leakage measures the maximum probability of each observa-
tion given any secret value. Mutual information is the amount
of information that an attacker learns about the secret space
from the observation space. Maximal leakage and mutual
information can be computed, respectively:

LML = log2
∑
y∈Y

max
s∈S

P (y|s)

LMI =
∑

s∈S,y∈Y

P (s)P (y|s) log2
P (y|s)∑

s∈S P (s)P (y|s)

It has been shown that mutual information is upper bounded
by maximal leakage [20]. Thus, prior work uses maximal
leakage as the appropriate metric to ensure that leakage
quantification is conservative when exact leakage functions
are unknown [10]. However, maximal leakage may be overly
pessimistic, because it overlooks the probability of the secret
value itself. Microarchitectural leakage functions allow us to
more precisely define the probability of an attacker observation
conditioned on the secret operands.

C. Step 3: Program Analysis

We encountered two main challenges when trying to quan-
tify leakage from transmitters in cryptographic programs. First,
the values of secret program inputs may be transformed
before they are passed to transmitter operands. Second, there
can be many transmitters in a single program which may
layer on top of one another and increase overall leakage. To
overcome these challenges, we used the symbolic execution
tool, KLEE [6], to determine how secrets are transformed from
program inputs to transmitter operands and whether multiple
transmitters leak additional information about the secret. To do
so, we instrumented the program and created a software model
of the leakage functions as a wrapper around the program’s
transmitters. Then by running the program on symbolic inputs,
we characterize the observable µpaths resulting from secret
inputs passed to transmitter operands.

We consider the Poly1305 hashing algorithm for secure
message authentication [18]. This program includes many
multiplication instructions where one of the two operands is
secret. Additionally, Poly1305 includes multiplications where

one operand is a transformed value of a secret input. There-
fore, this program is a good candidate to evaluate zero-skip
multiplication and digit-serial multiplication leakage functions.

IV. PRELIMINARY RESULTS

For each leakage function in Table I, we compute the mutual
information and maximal leakage, assuming that the secret
values are uniformly distributed. This assumption is valid for
our experiments because cryptographic keys are randomly dis-
tributed. For zero-skip multiplication, the mutual information
was nine orders of magnitude smaller than maximal leakage,
because the probability that the secret value is zero is very
small, 1

232 . Since mutual information takes the probability of
the secret into account and maximal leakage does not, this
explains the significant difference in the two metrics. For the
digit-serial multiplier, the mutual information is less than two
orders of magnitude smaller than maximal leakage. For CVA6
division, the mutual information is only about one third of
the maximal leakage. While we expect maximal leakage to be
conservative, these results show that when certain observations
only result from secret values with very low probabilities,
maximal leakage might be overly pessimistic.

Using KLEE to analyze the multiplication instructions in
Poly1305, we found that multiplying by a transformed secret
value had different leakage depending on the leakage func-
tion. For zero-skip multiplication, the transformed secret does
not change the attacker observation, and therefore does not
leak additional information about the secret. For digit-serial
multiplication, however, the transformed secret can result in a
different attacker observation, resulting in additional leakage.

Conclusion: Precise leakage functions allow us to be more
realistic about the risk of side-channel leakage. Thus, pro-
grams can be designed to protect secrets despite using unsafe
instructions.

V. RELATED WORK

Leakage quantification: Several works have evaluated dif-
ferent quantitative metrics for side-channel leakage [1, 3, 9, 14,
19, 20, 22]. A few works look at metrics for specific types of
side-channels [13] or specific mitigation strategies [10]. Our
work evaluates how more precise metrics can leveraged by
using microarchitectural leakage functions.

Leakage contracts: Hardware-software leakage contracts
have been proposed in prior work [12, 16, 17]. These contracts
often broadly classify operands of transmitters as safe or
unsafe. Microarchitectural leakage functions, on the other
hand, return exact µpaths, and therefore allow us to consider
the conditions under which said operands are safe or unsafe.

Symbolic execution for leakage analysis: Prior work uses
symbolic execution in the realm of side-channel discovery
and mitigation [4, 5, 8]. However, these approaches often
target a single type of side-channel, such as cache-based side-
channel attacks, or they are purely focused on using symbolic
execution to analyze software. We use symbolic execution
to model attacker observations (i.e. µpaths) that result from
secrets passed to transmitter operands.



REFERENCES

[1] Màrio S. Alvim et al. “Measuring Information Leakage
Using Generalized Gain Functions”. In: 2012 IEEE
25th Computer Security Foundations Symposium. 2012,
pp. 265–279. DOI: 10.1109/CSF.2012.26.

[2] Daniel J. Bernstein. “The Poly1305-AES Message-
Authentication Code”. In: Fast Software Encryption.
Ed. by Henri Gilbert and Helena Handschuh. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 32–
49. ISBN: 978-3-540-31669-5.

[3] Christelle Braun, Konstantinos Chatzikokolakis, and
Catuscia Palamidessi. “Quantitative Notions of Leakage
for One-try Attacks”. In: Electronic Notes in Theoretical
Computer Science 249 (2009). Proceedings of the 25th
Conference on Mathematical Foundations of Program-
ming Semantics (MFPS 2009), pp. 75–91. ISSN: 1571-
0661. DOI: https://doi.org/10.1016/j.entcs.2009.07.085.
URL: https://www.sciencedirect.com/science/article/pii/
S1571066109003077.

[4] Tegan Brennan, Seemanta Saha, and Tevfik Bultan.
“Symbolic path cost analysis for side-channel detec-
tion”. In: May 2018, pp. 424–425. DOI: 10 . 1145 /
3183440.3195039.

[5] Robert Brotzman et al. “CaSym: Cache Aware Sym-
bolic Execution for Side Channel Detection and Mit-
igation”. In: 2019 IEEE Symposium on Security and
Privacy (SP). 2019, pp. 505–521. DOI: 10 . 1109 / SP.
2019.00022.

[6] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
“KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs”. In:
Proceedings of the 8th USENIX Conference on Oper-
ating Systems Design and Implementation. OSDI’08.
San Diego, California: USENIX Association, 2008,
pp. 209–224.

[7] Sunjay Cauligi et al. “SoK: Practical Foundations for
Spectre Defenses”. In: CoRR abs/2105.05801 (2021).
arXiv: 2105.05801. URL: https: / /arxiv.org/abs/2105.
05801.

[8] Sudipta Chattopadhyay et al. “Quantifying the Informa-
tion Leak in Cache Attacks through Symbolic Execu-
tion”. In: CoRR abs/1611.04426 (2016). arXiv: 1611.
04426. URL: http://arxiv.org/abs/1611.04426.

[9] John Demme et al. “Side-Channel Vulnerability Factor:
A Metric for Measuring Information Leakage”. In: Pro-
ceedings of the 39th Annual International Symposium
on Computer Architecture. ISCA ’12. Portland, Oregon:
IEEE Computer Society, 2012, pp. 106–117. ISBN:
9781450316422.

[10] Peter W. Deutsch et al. “Metior: A Comprehensive
Model to Evaluate Obfuscating Side-Channel Defense
Schemes”. In: Proceedings of the 50th Annual Inter-
national Symposium on Computer Architecture. ISCA
’23. Orlando, FL, USA: Association for Computing
Machinery, 2023. ISBN: 9798400700958. DOI: 10.1145/

3579371 . 3589073. URL: https : / / doi . org / 10 . 1145 /
3579371.3589073.

[11] Johann Großschädl et al. Side-Channel Analysis of
Cryptographic Software via Early-Terminating Multi-
plications. Cryptology ePrint Archive, Paper 2009/538.
https : / / eprint . iacr. org / 2009 / 538. 2009. URL: https :
//eprint.iacr.org/2009/538.

[12] Marco Guarnieri et al. Hardware-Software Contracts
for Secure Speculation. 2020. arXiv: 2006 . 03841
[cs.CR].

[13] Casen Hunger et al. “Understanding contention-based
channels and using them for defense”. In: 2015
IEEE 21st International Symposium on High Perfor-
mance Computer Architecture, HPCA 2015 (Mar. 2015),
pp. 639–650. DOI: 10.1109/HPCA.2015.7056069.

[14] Ibrahim Issa, Aaron B. Wagner, and Sudeep Kamath.
“An Operational Approach to Information Leakage”. In:
CoRR abs/1807.07878 (2018). arXiv: 1807.07878. URL:
http://arxiv.org/abs/1807.07878.

[15] Vladimir Kiriansky et al. “DAWG: A Defense Against
Cache Timing Attacks in Speculative Execution Pro-
cessors”. In: 2018 51st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). 2018,
pp. 974–987. DOI: 10.1109/MICRO.2018.00083.

[16] Nicholas Mosier et al. “Axiomatic Hardware-Software
Contracts for Security”. In: Proceedings of the 49th
Annual International Symposium on Computer Archi-
tecture. ISCA ’22. New York, New York: Association
for Computing Machinery, 2022, pp. 72–86. ISBN:
9781450386104. DOI: 10.1145/3470496.3527412. URL:
https://doi.org/10.1145/3470496.3527412.

[17] Jose Rodrigo Sanchez Vicarte et al. “Opening Pandora’s
Box: A Systematic Study of New Ways Microarchi-
tecture Can Leak Private Data”. In: 2021 ACM/IEEE
48th Annual International Symposium on Computer
Architecture (ISCA). 2021, pp. 347–360. DOI: 10.1109/
ISCA52012.2021.00035.

[18] The OpenSSL Project. “OpenSSL: The Open Source
toolkit for SSL/TLS”. www.openssl.org. Apr. 2003.

[19] Isabel Wagner and David Eckhoff. “Technical Pri-
vacy Metrics: a Systematic Survey”. In: CoRR
abs/1512.00327 (2015). arXiv: 1512.00327. URL: http:
//arxiv.org/abs/1512.00327.

[20] Benjamin Wu, Aaron B. Wagner, and G. Edward Suh.
“A Case for Maximal Leakage as a Side Channel
Leakage Metric”. In: CoRR abs/2004.08035 (2020).
arXiv: 2004.08035. URL: https: / /arxiv.org/abs/2004.
08035.

[21] Florian Zaruba and Luca Benini. CVA6 RISC-V CPU.
https://github.com/openhwgroup/cva6. 2019.

[22] Tianwei Zhang et al. “Side Channel Vulnerability Met-
rics: The Promise and the Pitfalls”. In: Proceedings of
the 2nd International Workshop on Hardware and Ar-
chitectural Support for Security and Privacy. HASP ’13.
Tel-Aviv, Israel: Association for Computing Machinery,
2013. ISBN: 9781450321181. DOI: 10.1145/2487726.

https://doi.org/10.1109/CSF.2012.26
https://doi.org/https://doi.org/10.1016/j.entcs.2009.07.085
https://www.sciencedirect.com/science/article/pii/S1571066109003077
https://www.sciencedirect.com/science/article/pii/S1571066109003077
https://doi.org/10.1145/3183440.3195039
https://doi.org/10.1145/3183440.3195039
https://doi.org/10.1109/SP.2019.00022
https://doi.org/10.1109/SP.2019.00022
https://arxiv.org/abs/2105.05801
https://arxiv.org/abs/2105.05801
https://arxiv.org/abs/2105.05801
https://arxiv.org/abs/1611.04426
https://arxiv.org/abs/1611.04426
http://arxiv.org/abs/1611.04426
https://doi.org/10.1145/3579371.3589073
https://doi.org/10.1145/3579371.3589073
https://doi.org/10.1145/3579371.3589073
https://doi.org/10.1145/3579371.3589073
https://eprint.iacr.org/2009/538
https://eprint.iacr.org/2009/538
https://eprint.iacr.org/2009/538
https://arxiv.org/abs/2006.03841
https://arxiv.org/abs/2006.03841
https://doi.org/10.1109/HPCA.2015.7056069
https://arxiv.org/abs/1807.07878
http://arxiv.org/abs/1807.07878
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1145/3470496.3527412
https://doi.org/10.1145/3470496.3527412
https://doi.org/10.1109/ISCA52012.2021.00035
https://doi.org/10.1109/ISCA52012.2021.00035
www.openssl.org
https://arxiv.org/abs/1512.00327
http://arxiv.org/abs/1512.00327
http://arxiv.org/abs/1512.00327
https://arxiv.org/abs/2004.08035
https://arxiv.org/abs/2004.08035
https://arxiv.org/abs/2004.08035
https://github.com/openhwgroup/cva6
https://doi.org/10.1145/2487726.2487728


2487728. URL: https : / / doi . org / 10 . 1145 / 2487726 .
2487728.

https://doi.org/10.1145/2487726.2487728
https://doi.org/10.1145/2487726.2487728
https://doi.org/10.1145/2487726.2487728

	Introduction
	Background & Motivation
	Methodology
	Step 1: Microarchitectural Leakage Functions
	Step 2: Leakage Quantification
	Step 3: Program Analysis

	Preliminary Results
	Related Work

